Shaw Back)

DOCUMENTOS SCIENTIFICOS

DA

COMISSÃO TÉCNICA DOS MÉTODOS QUÍMICO-ANALÍTICOS

Volume III. N.º 2

ARTUR CARDOSO PEREIRA

APONTAMENTOS

PARA A

REVISÃO DAS INSTRUÇÕES REGULAMENTARES

PARA A

FISCALISAÇÃO DOS LEITES E DOS LATICINIOS

APROVADAS PELO

Decreto de 14 de setembro de 1900

COÍMBRA IMPRENSA DA UNIVERSIDADE 1919 The fact has

DOCUMENTOS SCIENTÍFICOS

DA

COMISSÃO TÉCNICA DOS MÉTODOS QUÍMICO-ANALÍTICOS

Volume III. N.º 2

ARTUR CARDOSO PEREIRA

Apontamentos para a revisão das «Instruções regulamentares para a fiscalisação do leite e dos lacticinios»

APROVADAS POR

DECRETO DE 14 DE SETEMBRO DE 1900

CAPITULO I

Leites

1. - Densidade

A densidade deve ser determinada só 4 a 5 horas depois da mungidura e referida a 4º C.

A densidade poderá ser determinada pelo lacto-densimetro, pela balança Mohr-Westphal ou pelo picnómetro.

a) Lactodensimetro.

Émpregar-se-há o de Thuringia (dens.-referida a 4.º). Empregando o de Soxhlet, multiplicar o número obtido por 0,9991.

Temperatura do leite: 10 a 20°.

Correcções de temperatura:

Juntar 2 na quarta casa decimal para cada grau acima de 15° C.

Diminuir 2, idem, idem, para cada grau abaixo de 15º C.

b) Balança Mohr-Westphal.

(E o aparelho já indicado nos métodos oficiais para análise dos vinhos).

c) Picnómetro. Usar o picnómetro, modificação Cardoso Pereira (1).

Aferição do picnómetro e determinação da densidade a 15º C.—Para reduzir a 4º multiplicar por 0,9991.

Leite coagulado.

A 100 cm.³ de leite juntar 10 cm.³ de amonia. Agitar até dissolução da caseina.

Determinar a densidade da mistura pelo picnómetro

ou pela balança Mohr-Westphal.

A densidade do leite é obtida pela fórmula

$$D = \frac{Md - d'}{10},$$

em que d é a densidade da mistura do leite com amónia e d' a densidade da amónia.

2. - Extracto seco

Emprega-se a estufa de Soxhlet, carregada com glicerina e regulada a 103° C. Em cápsulas de niquel ou vidro, chatas, próprias para a estufa, deitar uma quantidade de pédra-pómes, préviamente calcinada, suficiente para cobrir completamente, e na espessura de alguns milímetros, o fundo da cápsula (quantidade correspondente pouco mais ou menos aos 7,5 g. aconselhados por Soxhlet), pezar a cápsula com a pedra-pómes e a tampa; espalhar sôbre a pedra-pómes 5 cm.³ de leite medidos com uma pipeta e pesar de novo; meter as cápsulas na estufa, sem tampa, e aí as deixar até que a temperatura, em se abaixando, suba de novo a 103° C.

Em geral 20 minutos são suficientes (2).

3. - Gordura

a) Nas primeiras análises empregar o butirómetro chato Gerber (3).

⁽¹⁾ Cardoso Pereira, in Rev. chim. pura e appl., 1907, p. 204.

⁽²⁾ Idem, ibidem, p. 311.
(3) A figura encontra-se fácilmente em qualquer livro moderno de análises de leite, ou em catálogos de a parelhos de química.

10 cm.³ de ácido sulfúrico H_2SO_4 de densidade 1,82-1,83 (10 cm.³ de H_2SO_4 d=1,84+1 vol. $H_2O)+11$ cm.³ de leite + 1 cm.³ de alcool amílico (P. $E=128-130^{\circ}$ C.).

Agitar até completa dissolução da caseina e, depois de rolhar o butirómetro, centrifugar 5 minutos, com 100 voltas por minuto. Gramas e decigramas na escala.

No leite magro empregar o butirómetro de precisão

de Gerber.

E inútil aquecer a banho-maria a 65° C.

b) Nas segundas análises:

Método refractométrico Wollny (empregando o aparelho Wollny-Zeiss com as modificações de Naumann).

Resultados especialmente rigorosos (Reichert e outros), concordando absolutamente com os resultados dos métodos ponderaes e muito mais simples.

Técnica:

30 cm.³ de leite + 4 gotas de ácido acético + 60 cm.³ de éter. Agitar, centrifugar e colocar no aparelho uma gota de soluto etéreo.

Com o aparelho modificado por Naumann, lê-se ime-

diatamente a percentagem da gordura.

Utilisar a Tabela III no final destas Instrucções.

Nota. — Quando se não tenha à mão o aparelho Wollny, seguir o processo *Röse e Gottlieb*, exacto, mas muito mais complicado.

As instruções que vão ser indicadas devem ser adoptadas a rigor para se obterem resultados concordantes

em doseamentos paralelos.

Num cilindro graduado de 100 cm. divididos em ½ cm. deitar 10 g. de leite aproximadamente, pezados + 1 cm.

de amónia.

Agitar e juntar ainda 10 cm. de alcool a 96 %. Agitar de novo e juntar 25 cm. de éter. Agitar vivamente (rolhar com rolha de cortiça humedecida). Adicionar 25 cm. de éter de petróleo (ponto de ebulição não superior a 60° C.). Passadas pelo menos 6 horas, decantar a maior parte da camada superior e lavar com 25 cm. de éter. Evaporar num frasco de Erlenmeyer a banho-maria e secar a 103 a 105° C., até pezo constante (½ a 1 hora), pesar e repetir a pesagem de quarto em quarto de hora. Lavar ainda o conteúdo do cilindro, por 2 vezes, com 25 cm. de éter de cada vez.

A percentagem de gordura G é

$$\mathbf{G} = \frac{q \times 100}{g}$$

sendo g o peso da gordura pesada e q o peso de leite empregado (1)

4. - Lactose

Doseamento. - Técnica

a) Refractometricamente (Wollny-Braun).

5 cm. 3 de leite num tubo Wollny + 5 g. cloreto de cálcio a 4 %; 10 minutos num banho-maria fervente. Deixar arrefecer; filtrar o sôro e colocar uma gota no aparelho. Ler a 17,5° C. (Vêr tabelas adeante).

b) No caso de se não dispôr do aparelho Wollny, seguir o processo ponderal, aconselhado por Barthel, segundo a técnica seguinte:

25 cm.³ de leite + 400 cm.³ de água destilada + 10 cm.³ de soluto cúprico Fehling + soluto N/40 soda ou potassa até reacção neutra ou ligeiramente ácida (6,5 a 7,5 cm.³) + 20 cm.³ de fluoreto de sódio (soluto saturado a frio), água até 500 cm.³

Deixar repousar e filtrar por um filtro seco. Aquecer 50 cm.³ de soluto Fehling + 100 cm.³ do filtrado. Ferver durante 6 mínutos, e filtrar por um filtro quantitativo (n.º 400 Dreverhoff, Dresden). Lavar repetidas vezes com água bem quente; secar o filtro numa estufa de ar quente. Enrolar o filtro com o precipitado, ainda aderente ao filtro, num fio de platina, queimar, deixando caír as cinzas num cadinho de porcelana tarado. Adicionar 2 gotas de ácido azótico. Aquecer cuidadosamente a princípio e depois fortemente. Arrefecer e pesar (abatendo cinzas do filtro), multiplicar por 0,799 e entrar nas tabelas (1).

(1) As tabelas respectivas acham-se adeante.

Rev. chim. pura e appl., t. 1, 1905, p. 439 e segg. e vol. 11, 1906,
 p. 273.

5. - Cinzas

25 cm.³ de leite numa cápsula de platina com algumas gotas de ácido acético. Evaporar a banho-maria e secar na estufa. Fazer as cinzas por lixiviação, como está indicado nas instruções oficiais para a análise dos vinhos. Pesar, multiplicar o resíduo por 4 e dividir pela densidade.

6. - Nitratos

Nas amostras sem bicromato procede-se da seguinte

forma (1):

A 50 cm.³ de leite adicionar 1 cm.³ de soluto de cloreto de cálcio a 20 %; aquecer até fervura e filtrar; ½ cm.³ de líquido filtrado deita-se gota a gota no meio de 2 cm.³ de soluto de difenilâmina, contídos numa pequena cápsula de porcelana. Quando, passados alguns minutos, aparecem laivos azuis, agitar a cápsula levemente, deixar outra vez em repouso durante alguns minutos e tornar a agitar até que todo o líquido tenha adquirido a coloração azul.

O soluto fenilâmina prepara-se dissolvendo 20 mg. de difenilâmina em 20 cm.³ de ácido sulfúrico diluído (1:3 vol.) em balão de 100 cm.³ e perfazendo o volume

com ácido sulfúrico concentrado.

Nas amostras com bicromato, o filtrado de cloreto de cálcio será adicionado de 5 gotas de alcool + 1 gota de ácido sulfúrico H₂SO₄; o líquido leva-se à ebulição durante 1 minuto e, depois de frio, é ensaiado com a difenilâmina.

7. - Azote total

Processo Kjeldahl, em 10 cm.3 de leite, pesados.

⁽¹⁾ Rev. de chim. pura e appl., vol. viii, 1912, p. 181 e vol. ix, 1913, p. 116.

8. — Caseina

Processo de Schlossmann.

10 cm.³ leite + 40 cm.³ de água. Aquecer a 45° C. em banho-maria, juntar, agitando sempre, 1 cm.³ de soluto saturado a frio de alumen. Se o líquido que sobrenada não ficar completamente claro, juntar ainda soluto de alumen (o máximo 0,5 cm.³) às gotas. Filtrar, lavar a fundo e determinar o azoto pelo processo Kjeldahl. Multiplicar por 6,37 e por 10, para obter a caseina por 100.

9. — Graus de acidez (Thörner)

10 cm.³ de leite + 20 cm.³ de água + 5 gotas de fenolftaleina.

Titular com soda ou potassa N/10. Multiplicar por 10.

10. — Impurezas

Empregar o aparelho Gerber, seguindo as instrucções que acompanham o aparelho.

11. — Reductase (1)

10 cm.³ de leite num tubo de ensaio + 0,5 cm.³ de soluto azul de metileno + 1 pequena camada de parafina líquida. Banho-maria 50° C. Determinar o tempo que leva a descorar a solução.

Preparação do soluto:

Nota. — Quando fôr possível, é preferível empregar o aparelho do dr. *Lobeck*, seguindo as instruções que acompanham o aparelho.

⁽¹⁾ Veja-se Marrecas Ferreira — A análise higiénica do leite. (Arch. do Inst. de Med. leg. de Lisboa, série B, vol. 1).

12. — Catalase (1)

Empregar se há de preferência o aparelho dos drs. Gerber e Lobeck, quando se tiver um grande número de amostras, ou do dr. Lobeck, quando fôr pequeno o número das mesmas amostras (os aparelhos são acompanhados de instrucções especiais).

13. - Conservadores

(em leites não tratados pelo bicromato)

1) Carbonato ou bicarbonato de sodio.

50 cm.³ de leite + 250 cm.³ de água; ferver, coagular por uma pequena quantidade de alcool e filtrar. Reduzir a metade pela ebulição.

A reacção é alcalina, no caso de haver carbonatos

alcalinos (Processo de Hilger).

Nota. — Tambêm se poderá seguir o processo de Schmidt.

10 cm.³ de leite + 10 cm.³ de alcool a 96° C. + algumas gotas de ácido rozólico (sol. ⁴/₄₀₀).

Leite puro: côr amarelo-acastanhada; com carbonato,

rósea.

(Fazer ensaio comparativo com leite puro).

2) Acido bórico e seus sais.

(Processo Jenkins).

10 cm. de leite + 7 gotas de ácido clorídrico. Ensaiar o filtrado com papel curcuma, evaporar o líquido a banho-maria.

3) Acido salicílico.

200 cm. 3 de leite + 2 cm. 3 de ácido acético a 20 %, aquecer a 60°. Filtrar, agitar 100 cm. 3 do filtrado com éter + éter de petróleo (partes iguais), evaporar a pequeno volume, retomar com alguns cm. 3 de água distilada e ensaiar

⁽¹⁾ Veja-se Marrecas Ferreira — A análise higiénica do leite. (Arch. do Inst. de Med. leg. de Lisboa, série B, vol. 1).

com percloreto de ferro. Côr violeta, no caso de haver ácido salicílico.

4) Formaldeido.

Processo Utz.

Partes iguais de leite + ácido clorídrico HCl (d = 1,19) + alguns cristais de vanilino.

Leite normal: cor violeta magnifica de framboesa.

Leite com formalaldeido: côr amarela.

14. - Densidade do sôro

O sôro será preparado da seguinte maneira.

Seguir exactamente êste processo de preparação

le sôro.

100cm.³ de leite + 0,4 cm.³ de ácido acético. Aquecer a banho-maria a 65°. Deixar arrefecer. Vasar para um balão de 50 cm.³ pouco mais ou menos; o líquido que se separa até à parte inferior do gargalo do balão é pôsto num banho-maria fervente durante 5 minutos (para a precipitação da albumina). Deixar arrefecer e filtrar.

A densidade é determinada pelo picnómetro ou pela

balança Mohr-Westphal.

Cálculo do extracto pela gordura e densidade

Empregar a fórmula de Halenk e Möslinger

$$S = \frac{g + \frac{d}{5}}{0.8} = \frac{5 g + d}{4}$$

em que S representa a substância seca, g a gordura e d a densidade a 15° centígrados, em graus de lactodensimetro.

Bases de apreciação para leites

1) A densidade do leite de vaca a 15° C deve ser pelo menos 1,029.

2) A densidade do sôro à mesma temperatura deve

ser pelo menos de 1,026.

3) A matéria gôrda do leite completo de vaca em Lisboa e no Pôrto, deve ser pelo menos de 2,7 g. por 100 g.

4) O residuo seco isento de gordura deve ser pelo me-

nos 8 g. por 100 g.

5) o coeficiente de catalase deve ser inferior a 6.

- 6) no ensaio de *reductase* não se deve descorar a mistura antes de 3 horas.
- 7) As *impurezas* (materias insolúveis) não devem ser mais de 75 miligramas por litro.

8) A acidês Thörner deve ser no màximo 23.

9) O grau polarimétrico (leite precipitado por ⁴/₄₀ do seu volume de um soluto aquoso de ácido tricloroacético a 25 ⁰/₀; filtrar) observando à luz amarela num tubo de 2 decímetros, deve ser de 5^o a 5^o,5.

Para o leite tirar-se-hão duas ordens de amostras:

1) Leite fresco, sem adição de bicromato, imediatamente remetidas ao laboratório.

- c) Matérias insolúveis | pecial

2) Leites com bicromato:

Será absolutamente necessário empregar sempre a mesma quantidade de bicromato para a mesma quantidade de leite. Menos de bicromato, o leite não se conserva; mas o mesmo acontece, segundo investigações modernas, quando se empreguem quantidades excessivas desta substância. Alêm disso, a adição de quantidades desiguais de bicromato em amostras da mesma procedência terá como consequência a análise de contraprova não dar o mesmo resultado da primeira.

Para evitar estes graves inconvenientes, proponho:

- 1.º Empregar garrafas que podem ser de diferente capacidade, mas com um traço (a ácido fluorídrico, por exemplo), indicador da quantidade precisa do leite a colher.
- 2.º Empregar o bicromato; não em solução, mas em comprimidos, com quantidades rigorosamente doseadas de bicromato.

Lembro a alta e urgente necessidade de uma geleira, como há no Laboratório Municipal de Paris, para a conservação das amostras do leite (1).

Sobre a necessidade de fazer a fiscalização do leite, sob o ponto de vista higiénico, ponderar o que se lê em Falsificações alimentares, por Cardoso Pereira, pág. 358 e seguintes (Lisboa, 1908), e as palavras seguintes de A. Behre, da Repartição de investigação química da cidade de Chemnitz (Milchwirtschaftliches Zentralblatt,

março, 1907):

«Não devemos deixar de reflectir em que nos últimos anos a questão do leite tomou um aspecto completamente diferente. Emquanto que, a princípio, a fiscalização do leite ligava toda a importância à sua composição química o lado higiénico da questão toma a primazia de cada vez mais e — devêmo-lo reconhecer — com justa razão. De que serve ter um leite com 4 % de gordura, se êsse leite foi produzido em estábulos anti-higiénicos, sujos, mungido por mãos sujas e recolhido em reservatórios igualmente sujos? A química, tal e qual se fazia até hoje, quási nada diz a respeito das péssimas qualidades higiénicas dêstes leites. É absolutamente necessário que todos se congreguem para dar a êste ponto de vista toda a importância primacial que merece».

⁽¹⁾ Cf. Cardoso Pereira, Rev. chim. pura e appl., 1907, p. 358.

CAPITULO II

Manteigas

1. - Humidade

Misturar bem a amostra com uma pequena espátula de vidro ou madeira (ou simplesmente uma vareta de vidro). Pesar numa cápsula de vidro ou niquel, tarada, 5 g. de manteiga. Juntar 10 a 15 g. de pedra-pómes, calcinada, e misturar a manteiga e a pedra-pómes, cuidadosamente, com uma pequena vareta de vidro. Tapar a cápsula e pesar (cápsula + tampa + pedra-pómes + manteiga). Estufa Soxhlet durante 30 a 45 minutos a 103°. Cápsula, sem tampa. Pesar e multiplicar por 20. A perda de peso indica a percentagem em água.

Nota. — Na falta de estufa de Soxhlet, póde-se, confiadamente, determinar a humidade pela balança «Perplex» (Müller), seguindo as Instrucções que acompanham o aparelho.

2. - Sal

2 a 3 g. de manteiga + 20 cm. de éter + água distilada + cromato de potássio.

Titular com soluto N/10 de azotato de prata.

3. - Acidês

5 g. de manteiga + mistura de 20 cm. de alcool e 20 cm. de éter. — Agitar e titular com soda N/40, com a fenolftaleina, como indicador.

4. - Gorduras estranhas

Fundir a manteiga a 50-60° C., deixar repousar por algum tempo e filtrar por um filtro seco.

A gordura filtrada é que serve para as investigações

que em seguida vão mencionadas.

a) Indice Wollny-Zeiss.

Determinál-o, segundo as Instrucções que acompanham

o aparelho, a 25° C.

Se o índice for superior a 52,5 proceder à determinação dos índices Reichert-Meissl, Köttstorfer e Polenske.

b) Indices de Reichert-Meissl e de Köttstorfer.

Num balão de Iena de 300 cm.3 pouco mais ou menos, pezar 5 g. de gordura da manteiga + 50 cm.3 de soluto alcólico de potassa aproximadamente N/2. Saponificar a banho-maria (com funil ou refrigerante ascendente), agitando freguentes vezes.

Conhece-se que a saponificação está completa quando o líquido é limpido, sem gotas oleosas. Juntar algumas gotas do soluto de fenolftaleina, ácido sulfúrico N/2 até côr amarelo-palha. Notar o número de cm. 3 do ácido sulfúrico N/2 empregado. Fazer o ensaio em branco com 50 cm.3 de potassa alcólica nas mesmas condições da experiência anterior.

Juntar 20 gotas de soluto alcólico de potassa, expulsar o alcool a banho-maria, empregando para o fim da operação uma corrente de ar gerada por uma pêra de cautchu. A expulsão do alcool tem de ser feita o mais rapidamente possível. Dissolver o sabão em água a 50° C., juntar alguns fragmentos de pedra-pómes e 80 cm.3 de ácido sulfúrico a 10%. Ligar o balão por meio dum tubo ascendente e curvado (diâmetro 6 mm.; parte ascendente 20 cent.) a um refrigerante, tendo, pelo menos, 50 cm.3 de tubo mergulhado na água e destilar exactamente 110 cm.³, o que deve levar 30 minutos no máximo. Misturar o destilado, filtrar e titular 100 cm. 3 por meio de soda N/10.

Cálculos. — 1) Para o indice de Köttstorfer.

Representando por d a diferença entre o número de cm.3 de ácido sulfúrico empregados no ensaio com a gordura e o número do mesmo ácido para o ensaio em branco, o índice de saponificação ou Köttstorfer x será

$$x = \frac{28,05 \times d}{5}.$$

2) Para o indice de Reichert-Meissl.

Subtraír do número de cm.³ de soda decinormal empregados os décimos da mesma soda que fôrem necessários para um ensaio em branco com 50 cm.³ de potassa e adicionar ⁴/₁₀. O número obtido é o chamado *indice de Reichert-Meissl* (1).

c) Indice de Polenske.

Num balão de Iena de 300 cm.³: 5 g. de gordura de manteiga + 20 g. de glicerina + 2 cm.³ de lixivia de soda (1+1). Dissolver o sabão em 90 cm.³ de água, juntar uma ponta de canivete de pedra-pómes em pó grosso + 50 cm.³ de ácido sulfúrico diluido (25 cm.³ de H₂SO₄ + 975 cm.³ de água) e destilar imediatamente depois de fechar o balão. Regular a chama de forma que se obtenham 110 cm.³ dentro de 19 a 21 minutos. O destilado não deve ser muito frio, nem quente (gota a gota — 20-23° C.).

Logo que se obtenham 110 cm.³, afastar a chama e substituir o balão por uma proveta de 25 cm.³. Colocar o destilado em água a 15° C. de forma que a marca 110 cm.³ se ache 3 cm.³ abaixo da superfície da água. Passados os 5 primeiros minutos, agitar o colo do balão dentro da água, de forma que os ácidos que sobrenadam cheguem à parede inferior do colo. Passados 10 minutos, os ácidos ficam solidificados.

Notar se êstes ácidos são ou formados por massas compactas ou semi-moles, turvas, sem forma definida ou gotas oleosas, claras (a gordura do côco contêm maior quantidade de ácido caprilico que a manteiga; o ácido

⁽¹⁾ Quando se não quizerem fazer os 2 índices de Köttstorfer e e Reichert-Meissl reunidos, mas só o primeiro, siga-se o processo indicado por Cardoso Pereira. Aí tambêm se encontra a maneira de preparar a solução de potassa alcólica. Não é, porêm, preciso empregar alcool destilado em presença da potassa, como se diz nesse trabalho. Veja-se Cardoso Pereira, Contribuição para o estudo químico dos queijos portugueses, Lisboa, 1904, p. 5 e 6.

caprílico congéla só a 12° C.). Agitar 4-5 vezes o destilado no balão com rôlha de vidro, não agitando vivamente. Filtrar. No filtrado determinar o índice Reichert-Meissl. O filtro deve ser de 8 cm., e bem junto à parede do funil. Filtrado o destilado, lavar o filtro com 15 cm.³ de água, por 3 vezes. Aproveitar estas águas de lavagem para lavar por 3 vezes o tubo refrigerante, a proveta e o balão de 110 cm.³. Quando passa a última água de lavagem (cujos últimos 10 cm.³ devem ser neutralizados por 1 gota de barita cáustica N/40,) deve-se fazer a mesma operação, da mesma maneira, por 3 vezes com 10 cm.³ (de cada vez) de alcool a 90° C.; neutralízados os ácidos gordos dissolvidos nos sólutos semi-alcólicos são titulados com barita cáustica N/40; como indicador a fenolftaleina.

O indice de Polenske é o número de cm.3 de barita

cáustica N/10 empregados.

d) Ensaio da fitosterina, segundo Böhmer.

Fundir 100 g. num balão Erlenmeyer de cêrca de 1-1 ½ litro + 200 cm.³ dum soluto alcólico de potassa (200 g. de KOH em 1 litro de alcool a 70 %). Saponi-

ficar a banho-maria, agitando frequentes vezes.

Deitar o soluto de sabão ainda quente num funil de separação de 2 litros de capacidade, no qual se deitaram préviamente 300 cm.3 de água, lavando o resto do soluto de sabão com outros 300 cm.3 de éter. Deixar esfriar e juntar 800 cm.3 de éter. Agitar 1/2 a 1 minuto enérgicamente. Deixar repousar e separar as camadas pela forma habítual. Repetir a agitação com éter 1 ou 3 vezes, com 300-400 cm.3 de éter, filtrar os solutos étéreos e destilar o éter, com adição de alguns fragmentos de pedra pómes. Mergulhar o balão no banho-maria e expulsar o alcool que fica, com 1 pera de borracha. Saponificar ainda com 10 cm.3 de potassa alcólica durante 5 a 10 minutos e repetir a operação anterior no funil de separação (lavar com 20 cm.3 de água; agitar 2 vezes com 100 cm.3 de éter). Lavar ainda as soluções etéreas com 10 cm.3 de água, pouco mais ou menos, filtrar o éter num copo de Boémia e concentrar lentamente. Secar na estufa. Obterse-hão no resíduo cristais de colesterina ou fitosterina (segundo a manteiga for pura ou falsificada com gorduras vegetais).

5. — Matéria gôrda

A matéria gôrda determina-se:

a) Indirectamente por diferença entre 100 e o

peso de água, caseina, lactose e cinzas.

b) Directamente, numa cápsula de porcelana (ou cadinho) pesar 5 g. de manteiga + 20 g. de gêsso. Secar a 100° C., durante 6 horas. Deixar arrefecer e extrair no aparelho de Soxhlet.

6. - Caseina

Secam-se 5 a 10 g. de manteiga em uma cápsula pequena na estufa a 100° C. durante seis horas, agitando frequentes vezes. Depois de arrefecer, dissolve-se a maior parte da gordura pelo éter sulfúrico, lança-se a parte insolúvel num filtro, seca-se, deita-se o filtro com o conteúdo num balão de vidro (balão de Kjeldahl), e ferve-se com 25 cm.³ de ácido sulfúrico concentrado e 0,5 g. de sulfato de cobre até à destruição completa da substância orgânica. Destila-se com um excesso de soda cáustica, recebendo-se o destilado em 20 cm.³ de ácido sulfúrico N/40 e titula-se por meio de soda cáustica N/40 a quantidade de ácido N/40 não saturado.

À diferença entre 20 e êste número, multiplicada por 6,37, indica a quantidade de caseina contida na porção de

manteiga submetida ao exame.

7. — Córantes azóicos

2 a 3 g. de gordura de manteiga + 5 cm. 3 de éter + ácido clorídrico (d = 1,125) num tubo de ensaio.

Côr rósea da camada inferior, no caso de haver có-

rantes azóicos.

8. — Substâncias minerais

5 a 10 gr. de manteiga são privadas da maior parte

de gordura pelo método acima descrito.

O filtro com o conteúdo lança-se numa cápsula de platina tarada, carbonisa-se a fôgo brando e extrae-se repetidas vezes com água quente, passando-se os solutos obtidos, por um filtro quantitativo pequeno. Mete-se o filtro com o carvão lixiviado na cápsula, seca-se na estufa, calcina-se completamente, junta-se o extracto aquoso do carvão, evapora-se, seca-se e calcina-se ao rubro sombrio.

Nas cinzas assim obtidas procuram-se as substâncias minerais estranhas, conforme os métodos gerais de análise qualitativa (1).

9. — Substâncias conservadoras

a) Acido bórico.

10 g. de manteiga saponificam-se numa cápsula de platina com potassa cáustica. Evapora-se á secura, seca-se, calcina-se e junta-se ácido clorídrico em ligeiro excesso. Na solução ácida introduz-se uma tira de papel de curcuma e seca-se num vidro de relógio a 100° C. Em presença do ácido bórico, o papel adquire cor castanha-avermelhada, que passa a azul com uma gôta de solução diluída de carbonato de sódio.

b) Acido salicílico.

Deitam-se em um tubo de ensaio, 4 cm.³ de alcool (20 %) em volume), 3 gotas de solução de percloreto de ferro (4/1000) e 2 cm.³ de gordura de manteiga. Agita-se a mistura muitas vezes (40 a 50). Em presença do ácido salicílico, a camada aquosa mostra coloração violeta.

c) Aldeide formico.

A 50 g. de manteiga contidas num balão de cêrca de 250 cm.³ de capacidade, juntam-se 50 cm.³ de água, aquece-se e destila-se numa corrente de vapor de água, recebendo 25 cm.³ do destilado. Misturam-se 3 cm.³ deste com uns cristais de resoreina e 3 cm.³ de solução de soda cáustica a 40 %, aquecendo-se ligeiramente. O aparecimento de coloração vermelha indica a presença de aldeíde formico (2).

(2) Idem.

⁽¹⁾ Instrucções de 14 de Setembro de 1900.

10. Ácidos voláteis

10 g. de manteiga não de gordura, submetem-se á destilação numa corrente de vapor de água por meio do aparelho de Landman usado para a determinação dos ácidos voláteis nos vinhos. Cada cm.³ de soda cáustica N/40 corresponde a 0,0088 g. de ácido butírico (1).

10. - Indice Crismer

(Temperatura crítica de dissolução no alcool)

Tubos de ensaio 100-120 milímetros de comprimento e 10 milímetros de diâmetro, com 2 traços; — o espaço

superior duplo do inferior.

Até à marca inferior, gordura de manteiga fundida e filtrada; até à marca superior, alcool. Rolhar com rolha através da qual passa um termómetro, que chegue até ao meio do líquido. Aquecer a solução até ficar completamente límpida. Deixar arrefecer, até se observar na parte superior uma turvação. Notar a temperatura.

Segundo Crismer, esta é a temperatura chamada crítica. A gordura deve ser neutra e o alcool deve ter a

Bases de apreciação para as manteigas

17°,5 C. exactamente a densidade 0,7967.

1) Indice Wollny-Zeiss superior a 52°,5 (a 25° C.) indica a suspeita de falsificação por gorduras estranhas. Nesse caso submeter a manteiga ao ensaio Reichert-Meissl e Köttstorfer, eventualmente Polenske e Böhmer.

2) Os ácidos livres não devem ser superiores a 15 cm.3

de ácido normal.

3) Manteigas rançosas serão consideradas as que tiverem mais de 3 decig. ⁰/₀₀ de ácidos voláteis, calculados em ácido butrico.

4) A diferença de Juckenack e Pasternack deve ser = 0.
5) O índice de Crismer deve oscilar entre 53 e 59° C.

6) A investigação da fitosterina deve dar resultado negativo (2).

⁽¹⁾ Cf. bases de apreciação das manteigas nas Instrucções de 14 de setembro de 1900 e Decreto de 19 de dezembro de 1903. (2) Idem.

CAPÍTULO III

Queijos

Colheita da amostra (1)

1.º A amostra deve representar o melhor possível a composição média do queijo, não devendo provir portanto só da côdea, nem do interior só. Em queijos grandes tira-se uma porção cilindrica perpendicular à base, por meio de um tubo parecido ao que serve para tirar as amostras de manteiga. De queijos de fórma esférica cortam-se secções radiais. De queijos pequenos servem uns poucos.

2.º A quantidade será de 300 gramas.

3.º Acondiciona-se a amostra em frascos de vidro de boca larga, em boiões de porcelana ou loiça, seguindo-se ulteriormente as prescrições dadas para a colhei a das amostras de manteiga.

1. - Humidade

Pezar 5 g. de queijo numa cápsula de Sicgfeld, com areia. Estufa de Soxhlet a 103° C.

2. - Gordura

5 g. de queijo num balão de 30-50 cm.³. Juntar 10 cm.³ de ácido clorídrico a 1,191, rolhar o balão (com uma pequena rolha para poderem saír os vapores). Aquecer a chama fraca. Dissolvida a substância, vasar num cilindro de Röse e Gottlieb (cf. a determinação da gordura no capítulo referente a manteigas). Lavar o balão onde se fez a solução de queijos 3 ou 4 vezes com pequenas quanti-

⁽¹⁾ Instrucções de 14 de setembro de 1900.

dades de éter, de maneira que o volume total do éter prefaça no cilindro de Gottlieb o volume de 25 cm.³

Voltar 3 vezes o cilindro (depois de rolhado), juntar 25 cm.³ de éter de petróleo (ponto de ebulição acima de 70° C.), agitar de novo, deixar repousar pelo menos duas horas e pipetar a solução etérea gordurosa (até 1-2 cm.³ da superfície inferior) num balão tarado.

Deitar no recinto do cilindro ainda 25 cm.³ de éter e 25 cm.³ de éter de petróleo e proceder às mesmas opera-

ções de decantação acima indicadas.

Destilar o éter, secar o resíduo durante 2 horas, eliminar os últimos vestígios de éter por corrente de ar, e deixar esfriar e pezar.

3. - Azoto total

Em cima de um pequeno filtro pesar 1 a 2 g. de queijo, envolver o queijo no papel e deitar num balão de ataque Kjeldahl, adicionando-lhe 20 cm.³ de ácido sulfúrico puró, e 2 gotas de mercúrio, ferver a banho de areia durante ½ hora e, depois de arrefecido o balão, juntar uma colher de chá de bisulfato de potássio, e continuar a fervura até que o liquido fique completamente incolôr, depois de ter colocado no orifício do balão uma esfera de vidro com um prolongamento. O banho, naturalmente de pequenas dimensões, deve ter uma per

quena quantidade de areia.

Arrefecido o balão de ataque, transvasar o conteúdo para um balão de cobre, lavar umas 5 ou seis vezes com pequenas quantidades de água, adicionar 120 cm.³ dum soluto muito forte de soda ou potassa cáustica e adaptar, o mais rapidamente possível, ao balão um tubo recurvado refrigerante apropriado; ferver durante ½ hora, recolhendo o destilado em ácido sulfúrico normal (20 cm.³ com 25 cm.³ pouco mais ou menos de água destilada, num balão Erlenmeyer, que se prepara préviamente). Abaixar êste balão de Erlenmeyer, e prolongar a ebulição por mais 10 minutos. Titular o excesso de ácido sulfúrico não saturado por meio do soluto normal de soda, usando como indicador o tornesol ou o lakmoide. O azoto de 100 g. de substância é

$$x = \frac{(20-a)}{q} 0.014 \times 100$$

em que a designa o número preciso de cm.³ de soda normal para neutralisar o excesso de H^2SO^4 e q a quantidade de substancia empregada.

Fazer as determinações em duplicado (1).

Adopte-se o factor 6,39 para passar para proteina total.

Azoto da caseina e das substâncias azotadas solúveis

Secar 10-20 g. de queijo a 40° C. e extraír a gor-

dura pelo processo indicado acima (n.º 2).

A uma certa quantidade, pezada rigorosamente num copo de Boémia, de queijo seco e sem gordura, que servira para a determinação da gordura e da humidade, e, portanto, já reduzida a pó fino, adicionar-se 50 a 60 cm.³ de água, agitar durante alguns minutos com uma vareta de vidro e deixar em repouso durante umas 15 horas. Ao fim dêste tempo filtrar o líquido (é conveniente empregar o papel 595 de Schleicher & Schüll) e lavar o conteúdo do filtro com água fria, recolhendo-se o filtrado e as águas de lavagem num balão de 500 cm.³. Secar o filtro na estufa, e depois tratar como se se quizesse determinar o azoto total. O resultado obtido representa o azoto da caseina (2).

Para calcular a caseina multiplica-se pelo factor 6,39.

Evaporar 100 cc. do filtrado da operação anterior num balão de Kjeldahl e determinar o azoto do resíduo pelo processo de Kjeldahl (azoto das substâncias azotadas solúveis).

Factor: 6.39.

5. - Cinzas

Queimar com uma pequena chama num cadinho de porcelana tarada 10 g. de queijo seco e sem gordura. Reduzido tudo a uma massa preta porosa, lavar esta por três vezes com água fervente, filtrar as águas de lavagem por um filtro quantitativo, e recolhê-las num pe-

⁽¹⁾ Vidè Cardoso Pereira, Contribuição para o estudo chimico dos queijos portugueses, Coimbra, 1907, p. 7 e 8.
(2) Idem, p. 8 e 9.

queno balão de Erlenmeyer. Lavar três vezes pelo menos o filtro.

Incinerar o conteúdo do cadinho, deitar n'este o filtro com o conteúdo depois de seco, e incineral-o igualmente no cadinho.

Vazar no cadinho sobre as cinzas assim obtidas os filtrados, estes evaporados a banho-maria; adicionar um pouco de azotato de amónia, secar préviamente em estufa, e depois incinerar o resíduo.

O aumento de pezo do cadinho representa as cinzas (1). Nas cinzas determinar pelos processos habituais o cloro e outros sais minerais.

6. - Acidês

Num balão de 200 cm.³ graduado, lançar 10 g. de queijo fresco reduzido a pequenos fragmentos, encher o balão com ²/₃ de água pouco mais ou menos, e fazer ferver durante 10 minutos a ⁴/₄ de hora. Deixar arrefecer. encher até à marca e filtrar. Do filtrado tomara 100 cm.³, onde se determina a acidês por meio da solução N/₁0 de soda, com a fenolftaleina como indicador. Cada centímetro cúbico desta solução corresponde a 0,5 009 de ácido lactico (2).

7. - Exame microscópico

Tomar 10 gr. de queijo seco e sem gordura; macerar em água e examinar esta com iodo (amido).

Índices de refracção, de saponificação e Reichert-Meissl

Opera-se sôbre a gordura extraída pelo éter (cf. acima n.º 2, nestas determinações para queijos.

Para o Reichert-Meissl empregar maior quantidade de queijo, ou da gordura obtida, reduzindo a polpa 200 a

⁽¹⁾ Cardoso Pereira Ob. cit., p. 11 e 12.

300 g. de queijo, aquecida numa estufa a 80 ou 90° C., e decantando por um filtro sêco.

9. - Assucar

Por diferença ou directamente no queijo tratado por água (10 gr. de queijo seco e sem gordura), pelo processo indicado para a lactose (métodos de análise do leite).

10. — Bases de apreciação

Não deve ter substâncias minerais adicionadas à excepção do sal (as cinzas dos queijos contêm, quando muito, fosfato de cálcio).

A gordura deve ter as constantes da gordura da manteiga (cf. Bases da apreciação das manteigas).

O queijo deve corresponder ao tipo comercial por que é apresentado à venda (1).

¹⁾ Cf. Cardoso Pereira, Queijos, Separata, p. 39.

TABELA I

(para a determinação das quantidades de lactose pela quantidade do cobre encontrado)

Cálculo segundo Soxhlet

			D. C.				
Cobre	Lactose	Cobre	Lactose	Cobre	Lactose	Cöbre	Lactose
mg.	mg.	mg.	mg.	mg.	mg.	mg.	mg.
	1010	100	1010	020	4040	0.00	1000
140	101,3	180	131,6	220	161,9	260	192,6
141	102,1	181	132,4	221 222	162,7	261 262	193,3
142	102,8	182	133,1	222	163,4	262	194,1
143 144	103,6 104,3	183 184	133,9 134,7	224	164,2 164,9	264	194,9 195,7
145	105,1	165	135,4	225	165,6	265	196.4
146	105,8	186	136,2	226	166,4	266	197,2
147	106,6	187	136,9	227	167,1	267	198.0
148	107,3	188	137.7	228	167,9	268	198.8
149	108,1	- 189	138,5	229	168,6	269	199,5
150	108,8	190	139,2	230	169,4	270	200,3
151	109,6	191	140,0	231	170,1	271	201,1
152	110,4	192	140,8	232	170,9	272	201,9
153	111,1	193	141,5	233	171,6	273	202,7
154	111,9	194	142,3	234	172,4	274	203,5
155	112,6	195	143,1	235	173,1	275	204,3
156	113,4	196	143,8	236	173,9	276	205,1
157	114,1	197	144,6	237	174,7	277	205,9
158	114,9	198	145,4	238	175,4	278 279	206,7
159	115,7	199 200	146,2 146,9	239 240	176,2 176,9	280	207,5 208,3
160 161	116,4	200	147.7	241	177,7	281	209,1
162	117,2 117,9	201	147,7 148,4	242	178,5	282	209,9
163	118,7	203	149,2	243	179,3	283	210,7
164	119,4	204	149,9	244	180,1	284	211,5
165	120,2	205	150,7	245	180,9	285	212,3
166	120,9	206	151,4	246	181,6	286	213,1
167	121,7	207	152,2	247	182,4	287	213,9
168	122,4	208	152,9	248	183,2	288	214,7
169	123,2	209	153,7	249	184,0	289	215,5
170	123,9	210	154,4	250	184,8	290	216,3
171	124,7	211	155,2	251	185,6	291	217,1
172	125,5	212	155,9	252	186,3	292	217,9
173	126,2	213	156,7	253	187,1	293	218,7
174	127,0	214	157,4	254	187,9	294	219,5
175	127,8	215	158,2	255	188,7	295 296	220,3
176	128,6	216	158,9	256 257	189,4 190,2	296	221,2 222,0
177	129,3	217	159,7	258	191,0	298	222,8
178 179	130,1	218 219	160,4 $161,2$	259	191,8	299	223,6
119	130,9	210	101,2	200	101,0	200	220,0

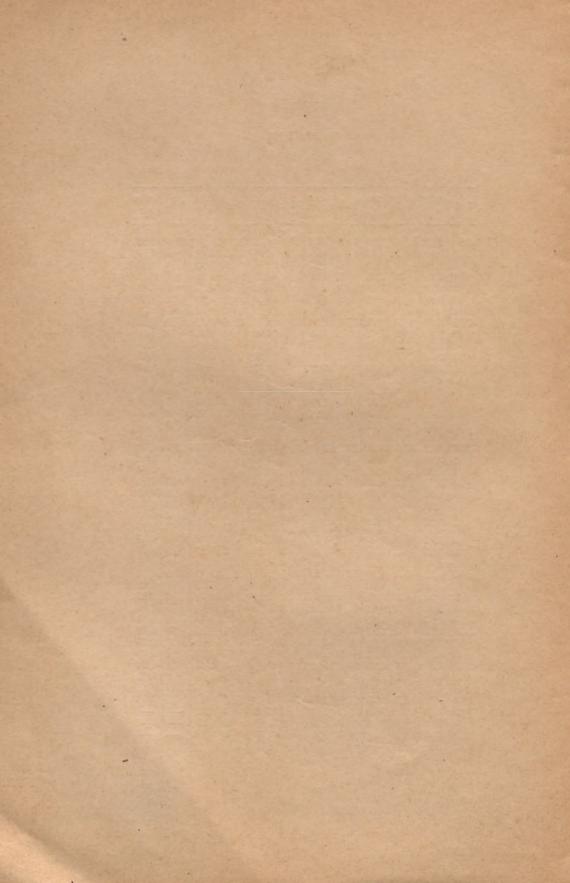
TABELA I (Continuação)

Cobre	Lactose	Cobre	Lactose	Cobre	Lactose	Cobre	Lactose
mg.	mg.	mg.	mg.	mg.	mg.	mg.	mg.
300	224,4	326	244,6	352	265,6	378	287,4
301	225,2	327	245,4	353	266,4	379	288,2
302	225,9	328	246,1	354	267,2	380	289,1
303	226,7	329	246.9	355	268.0	381	289,9
304	227,5	330	247,7	356	268,8	382	290,8
305	228,3	331	248,5	357	269,6	383	291,6
306	229,0	332	249,3	358	270,4	384	292,5
307	229,8	333	250,1	359	271,3	385	293,8
308	230,6	334	250,9	360	272,1	386	294,2
309	231,4	335	251,7	361	272,9	387	295,1
310	232,1	336	252,5	362	273,8	388	295,9
311	232,9	337	253,3	363	274,6	389	296,8
312	233,7	338	254,2	364	275,5	390	297,7
313	234,5	339	255,0	365	276,3	391	298,6
314	235,3	340	255,8	366	277,2	392	299,4
315	236,0	341	256,6	367	278,0	393	300,8
316	236,8	342	257,4	368	278,9	394	301,1
317	237,6	343	258,2	369	279,7	395	302,0
318	238,4	344	259,0	370	280,5	396	302,9
319	239,1	345	259,8	371	281,4	397	303,7
320	239,9	346	260,7	372	282,3	398	304,6
321	240,7	347	261,5	373	283,1	399	305,4
322	241,5	348	262,3	374	284,0	-	-
323	242,3	349	263,1	375	284,8	-	-
324	243,0	350	263,9	376	285,7	-	-
325	243,8	351	264,7	-377	286,5	-	-

TABELA II

(para a determinação refractométrica da lactose no leite)

Escala	Lactose 0/0	Escala	Lactose 0/0	Escala	Lactose 0/o	Escala	Lactose 0/0
3,1 2 3 4 5 6 7 8 9	1,75 1,80 1,85 1,90 1,96 2,01 2,07 2,12 2,18	6,1 2 3 4 5 6 7 8	3,31 3,36 3,42 3,47 3,52 3,57 3,62 3,67 3,72	9,1 2 3 4 5 6 7 8	4,84 4,89 4,95 5,00 5,05 5,10 5,15 5,20 5,25	12,1 2 3 4 5 6 7 8 9	6,35 6,40 6,46 6,51 6,56 6,61 6,66 6,71 6,76
4,0 1 2 3 4 5 6 7 8 9	2,23 2,29 2,35 2,40 2,45 2,50 2,55 2,60 2,65 2,70	7,0 1 2 3 4 5 6 7 8 9	3,77 3,82 3,87 3,93 3,98 4,03 4,08 4,13 4,18 4,23	10,0 1 2 3 4 5 6 7 8	5,30 5,35 5,40 5,45 5,50 5,55 5,60 5,65 5,70 5,75	13,0 1 2 3 4 5 6 7 8 9	6,81 6,86 6,91 6,97 7,02 7,07 7,12 7,17 7,22 7,27
5,0 1 2 3 4 5 6 7 8 9	2,75 2,80 2,85 2,91 2,96 3,01 3,06 3,11 3,16 3,21	8,0 1 2 3 4 5 6 7 8 9	4,28 4,33 4,38 4,44 4,54 4,54 4,64 4,69 4,74	11,0 1 2 3 4 5 6 7 8	5,80 5,85 5,90 5,95 6,00 6,05 6,10 6,15 6,20 6,25	14,0 1 2 3 4 5 6 7 8 9	7,33 7,38 7,43 7,48 7,53 7,58 7,63 7,68 7,73 7,78
6,0	3,26	9,0	4,79	12,0	6,30	15,0	7,84


TABELA III (para a determinação da gordura pelo método Wollny)

11.55		1000	AL NO.		The same	-07	No of	1	Maria I		2000
Escala	Gordura º/o	Escala	Gordura º/o	Escala	Gordura 0/o	Escala	Gordura º/o	Escala	Gordura 0/o	Escala	Gordara º/o
		01.4	0.04	00.0	0.54	00.0	1.10	0110	1.00	100	0.01
20,1	-	24,5	0,31	28,9	0,74	33,2	1,19	37,6	1,68	42,0	2,21 2,22
2 3		7	0,32	29,0	0,75	4	1,20	8	1,69 1,70	2	2,24
4		8	0,33	1	0,76	5	1,22	9	1,71	-3	2,25
5		9	0,35	2	0.77	6	1,24			4	2,26
6	0,00			3	0,78	7	1,25	38.0	1,72	5	2,28
7	0,01	25,0	0,36	4	0,79	8	1,26	1	1 73	6	2,29
8	0,01	1	0,37	5	0,80	9	1,27	. 2	1,75 1,76	7	2,30
9	0,02	2	0,38	6	0,81		The same	3	1,76	8	2,32
		3	0,38	7	0,82	34,0	1,28	4	1.77	9	2,33
21,0	0,03	4	0,39	8	0,83	1	1,29	5	1,78.		
1	0,04	5	0,40	9	0,84	2	1,30	6	1,79	43,0	2,34
2	0,04	6	0,41	20.0	0,85	3	1,31	7	1,81	1	2,35
3	0,05	7	0,42	30,0	0.86	4	1,32	8	1,82	2	2,37
4	0,06	8	0,43	1 2	0.87	5	1,33	9	1,83	3	2,38
5	0,07	9	0,44	3	0,88	6	1,35	39,0	1,84	4	2,39
6	0,08	26,0	0,45	4	0.89	7	1,36	1	1,85	5 6	2,41
7	0,08	1	0.46	5	0,90	8 9	1,37	2	1,87	7	2,42
8 9	0,09	2	0,47	6	0,91	9	1,38	3	1,88	8	2,43
3)	0,10	3	0,48	7	0,92	35,0	1,39	4	1,89	9	2,45
22,0	0,11	4	0,49	8	0,93	1	1,40	5	1,90		2,46
1	0,12	5	0,50	9	0,94	2	1,41	6	1,91	44,0	2,47
2	0,13	6	0,51			3	1,42	7	1,92	1	2,48
3	0,13	7	0.52	31,0	0,95	4	1,43	8	1,94	2	2,50
4	0,14	8	0,53	1	0,96	5	1,44	9	1,95	3	2,51
5	0,15	9	0,54	2	0.97	6	1,46		1	4	2,52
6	0,16			3	0,98	7	1,47	40,0	1,96 1,97	5	2,54
7	0,17	27,0	0,55	4	0,99	8.	1,48	1	1,97	6	2,55
8	0.17	1	0,56	5	1,00	9	1,49	2	1,98	7	2,56
9.	0,18	2	0,57	6	1,02	000		3	2,00	8	2,57
00.0	0.10	3	0,58	7	1,03	36,0	1,50	4 5	2,01	9	2,59
23,0	0,19	4	0,59	8	1,04	1 2	1,51	-	2,02	450	2,60
1 2	0,20	5 6	0.60	9	1,05	3	1,52	6 7	2,03	45,0	2,61
3	0,21	7	0,62	32,0	1,06	4	1,53 1,54	8	2,05	2	2,63
4	0,22	8	0,63	1	1,07	5	1,55	9	2,00	3	2,64
5	0,23	9	0,64	2	1,08	6	1,57	0	2,07	4	2,65
6	0,24		0,04	.3	1.09	7	1,58	41,0	2,08	5	2,67
7	0,25	28,0	0,65	4	1,10	8	1,59	1	2,09	6	2,68
8	0,25	1	0,66	5	1.11	9	1,60	2	2,11	. 7	2 70
9	0,26	2	0,67	6	1,13	300		3	2,12	8	2,70 2,71
	1	3	0,68	- 7	1,14	37,0	1,61	4	2,13	9	2,73
24,0	0,27	4	0,69	8	1,15	1	1,62	5	2,15		
1	0,28	5	0,70	9	1,16	2	1,63	6	2,16	46,0	2,74
2	0,29	6	0,71	1		3	1,64	7	2,17	1	2,76
3	0,29	7	0,72	33,0	1,17	4	1,65	8	2,19	2	2,77
4	0,30	8	0,73	1	1,18	5	1,66	9	2,20	3	2,78

TABELA III (Continuação)

		-			-						
Escala	Gordura 0/0	Escala	Gordora O/o	Escala	Gordura O/o	Escala	Gordura º/o	Escala	Gordura º/o	Escala	Gordura 0/0
101	2,80	50,4	3 38	54,4	4,03	58,4	4.72	62,4	5,45	66.4	6,26
46,4	2,81	5	3,40	54,4	4,05	5	4.74	5	5,47	5	6,28
6	2,83	6	3,41	6	4,07	6	4,76	6	5,49	6	6,30
7	2,84	7	3,43	7	4,08	7	4,77	7	5,51	7	6,32
8	2,86	8	3,44	8	4,09	8	4,79	8	5,53	8	6,34
9	2,87	9	3,46	9	4,11	9	4,81	9	5,55	9	9,36
47,0	2,88	51,0	3,47	55,0	4,13	59,0	4,83	63,0	5,57	67,0	6,39
1	2,90	1	3,48	1	4,15	1	4,84	1	5,59	1	6.41
2	2,91	2	3,50	2	4,16	2	4,86	2	5,61	2	6,43
3	2,92	3	3,51	3	4,18	3	4,88	3	5,63	3	6,45
4	2,94	4	3,53	4	4,20	4	4,90	4	5,65	4	6,47
5	2,95	5	3,54	5	4,21	5	4,92	5	5,67	5 6	6,49
6	2,97	6	3,56	6	4, 3	6 7	4,93	6 7	5,69	7	6,51
7	2,98	7	3,57	7	4,25	8	4,95	8	5,71 5,73	8	6,53
8 9	3,00	8 9	3,61	9	4,27 4,29	9	4,99	. 9	5,75	9	6,57
9	0,01	0		- "	1		1,00		0,10		
48,0	3,02	52,0	3,63	56,0	4,30	60,0	5,01	64,0	5,77	68,0	6,60
1	3,04	1	3,64	1	4,32	1	5,02	1	5,79	1	6,62
2	3,05	2	3,66	2	4,34	2	5,04	2	5,81	2	6,64
3	3,07	3	3,68	3	4,35	3	5,06	3	5,83	3	6,66
4	3,08	4	3,69	4	4,37	4	5,08	5	5,85	4	6,68
5	3,10	5	3,70	5	4,39	5	5,10	5	5,87	5	6,71
6	3,11	6	3,72	6	4,41	6	5,11	6 7	5,89	6 7	6,73 6,75
7	3,13	7	3,73	7	4,42	7	5,13	8	5,91	8	6,77
8	3,15	8 9	3,75	8 9	4,44	8 9	5,15 5,17	9	5,93 5,95	9	6,79
9	3,16	9	0,11	a a	4,46	0		9		0	
49,0	3,17	53,0	3,79	57,0	4,47	61,0	5,19	65,0	5,97	69,0	6,82
1	3,19	1	3,80	1	4,49	1	5,20	1	5,99	1	6,84
2	3,20	2	3,82	2	4,51	2	5,22	2	6,01	2	6,86
3	3,22	3	3,84	3	4,52	3	5,24	3	6,03	3 4	6,88
4	3,23	4	3,86	4	4,54	4	5,26 5,28	5	6,05	5	6.93
5	3,25	5	3,87	5 6	4,56 4,58	5 6	5,30	6	6,09	6	6.95
6	3,26	6 7	3,89	7	4,60	7	5,32	7	6,11	7	6,97
7 8	3,28	8	3,91	8	4,61	8	5,34	8	6,13	8	6,99
9	3,31	9	3,94	9	4,63	9	5,36	9	6,15	9	7,01
50,0	3,32	54,0	3,96	58,0	4,65	62,0	5,38	66,0	6,18	70,0	7,04
1	3,34	1	3,98	1	4,66	1	5,39	1	6,20	-	-
2	3,35	2	3,99	2	4.68	2	5,41	2	6,22	_	-
3	3,37	3	4,01	3	4,70	3	5,43	3	6,24	-	-
1	,,,,	-		-		-		1			

